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We consider a periodic array of relatively small roughness elements whose spanwise
separation is of the order of the local boundary-layer thickness and construct a
local asymptotic high-Reynolds-number solution that is valid in the vicinity of the
roughness. The resulting flow decays on the very short streamwise length scale of
the roughness, but the solution eventually becomes invalid at large downstream
distances and a new solution has to be constructed in the downstream region. This
latter result shows that the roughness-generated wakes can persist over very long
streamwise distances, which are much longer than the distance between the roughness
elements and the leading edge. Detailed numerical results are given for the far wake
structure.

1. Introduction
Surface roughness can influence laminar turbulent transition in several different

ways, depending on the nature of the underlying boundary-layer flow, as well as on
the height and spatial distribution of the roughness elements. The primary effects of the
roughness may be characterized by its impact on receptivity and linear amplification
in cases where transition occurs via the well-known paradigm of receptivity and linear
growth followed by a sequence of nonlinear events leading to laminar breakdown.
Small-amplitude roughness elements with an appropriate wavenumber spectrum may,
for example, serve to ‘scatter’ free-stream unsteadiness into travelling wave instabilities
(Goldstein 1985) or to act as a direct source of stationary vortex instabilities such
as Görtler vortices and stationary crossflow modes (Denier, Hall & Seddougui 1991;
Choudhari & Duck 1996). Sufficiently tall elements can also produce O(1) changes
in the underlying base flow, but the dominant instability mechanisms can remain
unchanged (with only the underlying instability growth rates being modified), even
when the basic flow is substantially altered by the surface roughness. This scenario
often applies to two-dimensional roughness distributions, i.e. surface height variations
that are primarily confined to the direction of the mean pressure gradient.
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In other cases, typically involving three-dimensional variations in surface geometry,
the surface roughness may introduce more substantial changes in the boundary-
layer instability mechanisms. A dramatic example of such changes is the onset of
unsteady vortex shedding behind three-dimensional roughness elements in a low-speed
boundary layer (Acarlar & Smith 1987; Klebanoff, Cleveland & Tidstrom 1992). An
additional example involves the formation of stationary streaks within the wakes
of discrete roughness elements in high-Mach-number boundary layers (Berry et al.
2001). The resulting flow can support highly unstable linear eigenmodes that are
best characterized as streak instabilities (Choudhari, Li & Edwards 2009). Analogous
streaks are also known to occur in low-speed boundary layers (Fransson et al. 2004),
where, depending on the wavenumber and the amplitude of the streaks, they have
been found to exert either a destabilizing or a stabilizing influence on the amplification
of boundary-layer instabilities (Cossu & Brandt 2002; Fransson et al. 2005).

It is suspected that roughness-induced streaks also play a role in the bypass
transition caused by distributed, three-dimensional surface roughness in linearly
stable or, at most, weakly unstable boundary-layer flows. There is an additional
class of flows where the presence of three-dimensional, distributed surface roughness
leads to transition under conditions where the unperturbed boundary-layer flow is
either stable or, at most, weakly unstable. In fact, it is well known that certain
types of initial perturbations may undergo a transient algebraic growth prior to
an eventual exponential decay even in linearly stable shear flows (Case 1960;
Ellingson & Palm 1975; Landahl 1980). Recent work suggests that the maximum
growth factors associated with certain optimal perturbations may be quite large, with
the associated energy amplification ratio approaching a value of several thousand
(Andersson, Berggren & Henningson 1999; Tumin & Reshotko 2001). The transient
growth paradigm has, therefore, emerged as a possible explanation for the subcritical
transition due to surface roughness. In fact, Reshotko & Tumin (2002) found that
a semi-empirical transition prediction criterion based on optimal disturbance growth
is able to correlate both of the major trends observed in transition measurements
over rough axisymmetric nosetips, namely, the dependence of transition location on
roughness height and the surface temperature. Given the success of this result, it seems
important to understand the physical mechanisms related to potential disturbance
growth in the wake flow behind the surface roughness.

It is well known that algebraic or non-modal growth usually arises from the ‘lift-up’
effect associated with spanwise varying displacement of a two-dimensional shear flow
(Landahl 1980) and has been associated with the so called ‘transient growth’ that
results from the non-normality of the linear stability operator (Trefethen et al. 1993).
Non-normality implies that a suitable superposition of linearly stable eigenmodes may
involve significant cancellation between the associated flow perturbations. The gradual
weakening of the mutual cancellation is expected to result in a transient growth in
disturbance amplitudes with increasing downstream distance. However, algebraic
growth occurs over long streamwise length scales of the order of the streamwise
variations in the underlying mean flow (i.e. non-parallel effects), which means, among
other things, that the destructive interference characteristics cannot be sustained as
the disturbances evolve downstream and that any strict asymptotic approach to the
problem must include non-parallel flow effects at the lowest order of approximation.
Optimal growth theory (Farrell 1988; Butler & Farrell 1992; Andersson et al. 1999;
Luchini 2000; Tumin & Reshotko 2001; Levin & Henningson 2003) provides an
upper bound on the algebraic amplification factors. According to this theory, the
optimal initial conditions are associated with velocity perturbations resembling a
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spanwise array of streamwise vortices – with the transient growth occurring as a
result of these initial conditions evolving into streak-like motions that are dominated
by perturbations in the streamwise velocity.

The actual relevance of optimal growth theory to boundary-layer transition is
largely dependent on receptivity characteristics of the laminar boundary layer with
the most important consideration being whether these characteristics allow such
optimal (or near optimal) initial conditions to be realized in a natural disturbance
environment. Transient growth of low-frequency boundary-layer disturbances due
to weak to moderate free-stream turbulence has been documented in a number of
experiments (Kendall 1985; Westin et al. 1994) and also predicted using theoretical
models (Andersson et al. 1999; Leib, Wundrow & Goldstein 1999). The work by Leib
et al. (1999) demonstrates the need to model the transient growth phenomenon as
an inhomogeneous boundary value problem associated with a physically realizable
forcing environment, rather than via the optimal growth formulation alone.

The analogous issue of whether initial conditions appropriate for near-optimal
growth can also be seeded via three-dimensional surface roughness (and, if so,
of what kind) has recently received considerable attention. Experimental studies
predating the developments in optimal growth theory (Tani 1962; Kendall 1982;
Gaster, Grosch & Jackson 1994) show that streak-like perturbations induced by
isolated roughness elements can persist for large distances behind the element. The
evolution of streak amplitudes behind a spanwise periodic array of elements has
been measured in the recent experiments by White & Ergin (2003) and Fransson
et al. (2004). Related computational studies (Choudhari & Fischer 2005) were able to
reproduce the measured flow behaviour in these experiments and also provided further
insights into the origin of transient growth behind the array and the highly suboptimal
growth factors involved. A linear finite-Reynolds-number model for the perturbations
behind the array of roughness elements was proposed by Tumin & Reshotko (2005).
While certain qualitative aspects of the experimentally observed wake structure were
captured by this model, the underlying assumptions were inherently inconsistent
with the nonlinear dependence of measured disturbance amplitudes on the roughness
height.

Despite the above-mentioned progress in understanding the near to far wake
perturbations behind three-dimensional surface roughness, a number of key questions
still remain unanswered, especially with regard to the scaling of streak amplitudes in
terms of roughness geometry and flow Reynolds number, as well as the switchover
from a linear behaviour at sufficiently small roughness heights to the nonlinear
behaviour encountered in the experiments. In the past, high-Reynolds-number
asymptotic methods have been successful in providing appropriate scaling laws and
clarifying a number of key issues related to boundary-layer transition (e.g. Goldstein,
1985; Goldstein & Hultgren 1989; Leib et al. 1999). The present paper uses this
approach to examine both linear and nonlinear perturbations due to a spanwise
periodic array of relatively small roughness elements whose (spanwise) separation
and plan form dimensions are of the order of the local boundary-layer thickness δ∗

(figure 1).
While the analysis in this paper would apply to any arbitrary incompressible

boundary layer with a non-zero wall shear with only minor modification, for
definiteness, we only consider the incompressible flat plate boundary layer. The
problem is formulated in § 2 and the local asymptotic high Reynolds number solution
in the vicinity of the roughness is outlined in § 3. It is shown to have a double
layer structure with the same scaling as in Choudhari & Duck (1996). An analogous
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Figure 1. Boundary-layer flow structure: (a) side view, (b) cross-sectional view.

two-dimensional problem was studied by Smith (1973) and Smith et al. (1981).
They show that the flow decays algebraically fast and eventually becomes linear
far downstream (on the roughness scale δ∗) of the roughness. The Choudhari &
Fischer (2005) simulations show that the spanwise variable components of the three-
dimensional wakes initially undergo a very rapid decay in the vicinity of the roughness.
It is, therefore, reasonable to assume that the flow is eventually governed by linear
equations at sufficiently large streamwise distances behind the three-dimensional
roughness elements being considered in the present paper – even when there is
significant nonlinearity in the vicinity of the roughness – and that, as in the two-
dimensional case and the three-dimensional linear case, the flow decays algebraically
fast on the short streamwise length scale δ∗ of the roughness. Numerical solutions to
the full nonlinear equations are used to verify that this actually occurs. The analysis
shows that the decay rate exponent α of the spanwise variable component of the
pressure is equal to 8/3 when the nonlinear terms are negligible, and no slower than
5/3 when they are not.

But the analysis also shows that the first-order terms (in the expansion parameter
ε ≡ R−1/6, where R is the length Reynolds number at the downstream location x∗

0

of the roughness) eventually become of the same order as the zeroeth-order terms –
causing the solution to become invalid at O(x∗

0
) distance downstream of the roughness

array (§ 4). The problem, therefore, has to be rescaled and a new solution has to be
constructed in this downstream region. This is described in § 5, where it is also shown
that the downstream ‘outer’ solution can be matched (in the strict asymptotic sense)
onto the local ‘inner’ solution. The former ‘outer’ solution, which is determined by the
linearized boundary region (LBR) equations (Kemp 1951), shows that the roughness-
generated wakes can actually persist over very long streamwise distances, which can
be much longer than the distance x∗

0 between the roughness elements and the leading
edge. The general nonlinear solution involves considerable numerical computation,
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but analytical results are obtained for the strictly linear problem (where the scaled
roughness height h � 1) in § 6 and extensive numerical computations are also carried
out for this case. The results and implications of the theory are discussed in § 8, where
some detailed comparisons with the nonlinear results are given. They show that
wake energies for the fully nonlinear case (corresponding to O(1) scaled roughness
heights) will be larger by a factor of R = ε−6 than those in the strictly linear case.
The surprising conclusion from this is that relatively mild nonlinearity (h = O(1) or
so) can have a much larger effect on the far wakes than on the near field flow in
the vicinity of the roughness. This suggests an extreme sensitivity to initial conditions
that is one of the more important characteristics of a chaotic flow.

2. Problem formulation and asymptotic scaling
As indicated in § 1, we consider an incompressible flat plate boundary layer that

is perturbed by a spanwise periodic linear array of roughness elements. Significant
disturbance growth is expected to occur when the spanwise length scale of the
roughness, say 2πl δ∗, is equal to or somewhat larger than the local boundary-layer
thickness δ∗ ≡ x∗

0/
√

R = x∗
0δ at the roughness location x∗ = x∗

0 , where R ≡ x∗
0U∞/ν∗ is

the Reynolds number based on x∗
0 and the free-stream velocity U∞ with ν∗ being

the kinematic viscosity and δ ≡ R−1/2 � 1 being the scaled boundary-layer thickness.
The emphasis in this paper is on more or less circular roughness elements with the
same streamwise and spanwise scaling and it seems reasonable to require that the
roughness be small enough to produce only local separation. It might then appear
that the triple-deck structure would produce the distinguished scaling, but this is
only true for two-dimensional flows. For the roughly equi-dimensional elements being
considered here, the more general scaling corresponds to setting the spanwise length
scale of the roughness equal to the local boundary-layer thickness, because it can
be shown that this scaling includes the case where the spanwise length scale is large
compared to the local boundary-layer thickness but small compared to the triple-
deck scale. This would not be true for elongated roughness elements whose streamwise
length scale is allowed to become large compared to their spanwise scale. But the
present scaling also produces a more general far wake behaviour than the triple-deck
scaling even in this case. We, therefore, write

y = yr = εhF̃ (x, z), (2.1)

u(x, yr, z) = v (x, yr, z) = w (x, yr, z) = 0, (2.2)

where all lengths are also normalized with respect to the boundary-layer thickness
at x∗ = x∗

0 unless otherwise noted, yr is the roughness height, ε ≡ R−1/6 = δ1/3 � 1,
x ≡ (x∗ − x∗

0 )/δ
∗ and, as usual the fluid velocity

v ={u, v, w} (2.3)

is normalized by U∞ and the pressure p by ρU 2
∞ where ρ is the fluid density.

3. Asymptotic structure of inner solution and governing equations
As will become clear subsequently, it is appropriate to divide the boundary-layer

flow into an inner region in the vicinity of the roughness elements and an outer region
that lies further downstream. The scaling in the former region is essentially the same
as that used in Choudhari & Duck (1996). The solution in the main boundary layer,
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where y =O(1), should, therefore, expand as

{u, v, w, p} = {U0, ε
3VB, 0, 0} + ε2{u0, v0, w0, p0} + ε3{u1, v1, w1, p1} + · · · , (3.1)

where

U0 ≡ UB(y) + ε7/4Ū 1(y) − y

2
ε3 xF ′′(y) (3.2)

and

VB (y) = 1
2
[yF ′(y) − F (y)] (3.3)

with UB(y) = F ′(y) being the velocity determined from the usual Blasius equation in
terms of the Blasius function F (ηB) of the Blasius variable

ηB ≡ y∗

x∗

√
x∗U∞/ν∗ (3.4)

with

UB(ηB) = F ′(ηB) → ληB + O
(
η4

B

)
as ηB → 0, (3.5)

where λ= 0.33206 and ε7/4Ū 1(y) is a small correction to the oncoming Blasius flow
induced by the spanwise mean flow over the roughness, which was originally pointed
out by Smith (1973) and is discussed more fully in Appendix A – it plays a
purely passive role in the present problem and is included here only for the sake
of completeness.

The zeroeth- and first-order solutions {ui, vi, wi, pi}, (i = 0, 1) are functions of
{x, y, z} and are determined by

UB(y)
∂ui

∂x
+ viU

′
B(y) = −∂pi

∂x
, (3.6)

UB(y)
∂vi

∂x
= −∂pi

∂y
, (3.7)

UB(y)
∂wi

∂x
= −∂pi

∂z
, (3.8)

∂ui

∂x
+

∂vi

∂y
+

∂wi

∂z
= 0, (3.9)

subject to the boundary conditions

p0(x, 0, z) = P (x, z), p1(x, 0, z) = P (1)(x, z); pi(x, y, z) → 0 as y → ∞, (3.10)

where the zeroeth- and first-order wall pressures P (x, z), P (1)(x, z) will be specified
more precisely below.

Eliminating {uj , vj , wj } yields

∇2pi − 2
U ′

B(y)

UB(y)

∂pi

∂y
= 0. (3.11)

Since the roughness is assumed to be periodic in the spanwise direction and the
flow in this region is linear, the spanwise and streamwise velocities posses the Fourier
expansions

wi(x, y, z) = − 1

UB(y)

n=∞∑
n=−∞

∫ ∞

−∞

nP̃ (i)
n (k)

l k
πn(y, k)ei(n z/l+kx) dk, (3.12)
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ui (x, y, z) = − 1

UB(y)

n=∞∑
n=−∞

∫ ∞

−∞
P̃ (i)

n (k)

[
U ′

B(y)

k2UB(y)

dπn(y, k)

dy
+ πn(y, k)

]
ei(n z/l+kx) dk

(3.13)
in terms of the solution πn(y, k) to the unit boundary value problem

U 2
B(y)

d

dy

[
1

U 2
B(y)

dπn

dy

]
−
[(n

l

)2

+ k2

]
πn = 0, n = 0, ±1, ±2, . . . , (3.14)

πn(0, k) = 1, πn(y, k) → 0 as y → ∞, (3.15)

where P̃ (0)
n (k) and P̃ (1)

n (k) are the streamwise wavenumber spanwise harmonic Fourier
coefficients of the zeroeth and first wall pressures P (x, z), P (1)(x, z), respectively.
Since y = 0 is a regular singular point of (3.14), it follows from (3.5) and the method
of Frobenius that the two linearly independent solutions of (3.14) have Taylor
series expansions about this point – a more explicit result for n= k = 0 is given in
Appendix A – and, therefore, that

π
n
(y, k) ∼ 1 − 1

2

[(n

l

)2

+ k2

]
y2 +

1

3!
π′′′

n
(0, k)y3 + O(y4) as y → 0, (3.16)

which shows that

wi(x, y, z) → − 1

λy

n=∞∑
n=−∞

∫ ∞

−∞

nP̃ (i)
n (k)

l k
[1 + O(y2)]ei(n z/l+kx) dk, (3.17)

and that

ui(x, y, z) → 1

λ y

n=∞∑
n=−∞

∫ ∞

−∞

P̃ (i)
n (k)

k2

[(n

l

)2

− 1

2
π′′′

n
(0, k)y

]
ei(n z/l+kx) dk, as y → 0.

(3.18)
The singularity in u0 causes the expansion (3.1) to break down when

	

Y ≡ y/ε = O(1), (3.19)

and it is then necessary to obtain a new solution in this region, which we refer to here
as the wall layer. Equations (3.17) and (3.18) show that the solution in this region
must expand as (see Choudhari & Duck 1996)

{u, v, w, p} = ε{U, ε
	

V , W, εP (x, z)} + ε2
{

U (1), ε
	

V
(1)

, W (1), εP (1)(x, z)
}

+ · · · , (3.20)

where we have introduced the Prandtl transformation

Y ≡ y/ε − hF̃ (x, z) =
	

Y − hF̃ (x, z), (3.21)

V ≡
	

V − h(F̃ xU + F̃ zW ), (3.22)

V (1) ≡
	

V
(1)

− h
(
F̃ xU

(1) + F̃ zW
(1)
)
, (3.23)

so that all velocity perturbations are functions of {x, Y, z} and it is anticipated
that the pressures do not vary across this thinner region to the required degree of
approximation. Since the second term in the square brackets in (3.18) must match
with an O(ε2) term in the wall layer, it is now clear why the O(ε3) term has to appear
in the expansion (3.1). The leading order solution {U, V, W, P } is determined from
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the three-dimensional boundary-layer equations

Ux + VY + Wz = 0, (3.24)

UW x + VW Y + WW z = −Pz + WYY , (3.25)

UUx + V UY + WUz = −Px + UYY , (3.26)

subject to the boundary conditions

U = V = W = 0, at Y = 0, (3.27)

U → λY ; V, W → 0, as x → ±∞, (3.28)

Wx → −Pz/λY, U → λ(Y + hF̃ ) +

	

P (x, z)

λY
asY → ∞, (3.29)

where
	

P (x, z) is determined by

	

P (x, z) − P (x, z) ≡
n=∞∑

n=−∞

∫ ∞

−∞

P̃ (0)
n (k)

k2

(n

l

)2

ei(n z/l+kx) dk, (3.30)

or equivalently

∂2

∂x2

	

P (x, z) ≡
(

∂2

∂z2
+

∂2

∂x2

)
P (x, z) . (3.31)

This system may be regarded as the three-dimensional analogue of the zero-
displacement two-dimensional problem considered by Smith (1976a,b) even though
there is a significant difference in its algebraic decay as Y → ∞.

The next-order solution {U (1), V (1), W (1), P (1)} is determined from the linearized
boundary-layer equations

U (1)
x + V

(1)
Y + W (1)

z = 0, (3.32)

UU (1)
x + V U

(1)
Y + WU (1)

z + U (1)Ux + V (1)UY + W (1)Uz = −P (1)
x + U

(1)
YY , (3.33)

UW (1)
x + VW (1)

Y + WW (1)
z + U (1)Wx + V (1)WY + W (1)Wz = −P (1)

z + W
(1)
YY , (3.34)

subject to the boundary conditions

W (1)
x → −P (1)

z /λY, U (1)
xx → p0,y y y(x, 0, z)/2λ

=
1

2λ

n=∞∑
n=−∞

∫ ∞

−∞
P̃ (0)

n (k)π′′′
n
(0, k) ei(n z/l+kx) dk as Y → ∞, (3.35)

U (1) = V (1) = W (1) = 0 at Y = 0, (3.36)

U (1), V (1), W (1) → 0 as x → ±∞. (3.37)

Notice that the 1st order problem is just a linearized version of the zeroeth-order
problem with the only difference being that the effective roughness height F̃ is replaced
by the pressure term on the right side of (3.35), which is determined by the Rayleigh
equation solution in the main boundary layer and (as we shall see) decays much more
slowly than F̃ as x → ∞. This is expected to cause the first-order solution to decay
much more slowly than the zeroeth-order result.
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4. Breakdown of inner solution
As in the linear case (see § 6) the wall pressures P (x, z) and P (1)(x, z) are expected

to decay algebraically as x → ∞. (Smith 1973 proved that this is true in the two-
dimensional zero displacement case, see also Smith et al. 1981.) However, the results
of Appendix A show that the spanwise mean components P̄ (x) and P̄ (1)(x) of P (x, z)
and P (1)(x, z), respectively behave differently from the spanwise variable component
and must, therefore, be considered separately. We subtract out the mean components
(which are of little interest in the present context because they do not contribute to
the three-dimensional far wake flow that is being considered here) and require that
P (x, z) − P̄ (x) and P (1)(x, z) − P̄ (1)(x) behave as x−α0 and x−α1 respectively for some
real constants α0, α1 > 0 as x → ∞. It then follows from (3.10) that

pj (x, y, z) − p̄j (x, y) ∼ p̂j (y, z) /xαj as x → ∞, (4.1)

where p̄j (x, y) denotes the spanwise average component of pj (x, y, z) (and similarly
for the remaining dependent variables uj (x, y, z), vj (x, y, z), wj (x, y, z)).

The asymptotic formulas in Carrier, Krook & Pearson (1966, pp. 255–256) show
that the corresponding Fourier coefficients P̃ (j )

n (k) − P̃
(j )
0 (k) must behave like

P̃ (j )
n (k) − P̃

(j )
0 (k) ∼ (ik)αj −1ã(j )

n as k → 0, (4.2)

where the ã(j )
n are constants. The Carrier et al. (1966) formulas also show that the

p̂j (y, z) are related to the unit Rayleigh equation solutions πn by

p̂j (y, z) ≡ −2 sin π(αj − 1)Γ (αj )

n=∞∑
n=−∞
n
=0

πn(y, 0)ã(j )
n einz/l . (4.3)

The main-deck equations (3.6)–(3.8) then imply that

wj (x, y, z) ∼ 1

(αj − 1)xαj −1

1

UB(y)

∂ p̂j (y, z)

∂z
, (4.4)

uj (x, y, z) − ūj (x, y) ∼ 1

(αj − 1)(αj − 2)xαj −2

U ′
B(y)

U 2
B(y)

∂

∂y
p̂j (y, z), (4.5)

which shows that the zeroeth- and first-order kinetic energies will decay with respect
to x when αj > 2 for both j = 0 and j =1. Equations (3.16) and (4.3), therefore, imply
that

p̂0(y, z) ∼ −2 sin π (α0 − 1) Γ (α0)

×
n=∞∑

n=−∞
n
=0

[
1 − 1

2

(n

l

)2

y2 +
1

3!
π′′′

n
(0, 0)y3 + O(y4)

]
ã(0)

n einz/l as y → 0, (4.6)

and it then follows that

wj (x, y, z) ∼ 1

(αj − 1)xα0−1λ

∂ p̂j (0, z)

∂ z
as y → 0, (4.7)

u0(x, y, z)−ū0(x, y) ∼ 1

(α0 − 1)(α0 − 2)xα0−2λ y

[
∂2p̂0(0, z)

∂ z2
+

y

2
p̂0,y y y(0, z)

]
as y → 0,

(4.8)

u1(x, y, z) − ū1(x, y) ∼ 1

(α1 − 1)(α1 − 2)xα1−2λ y

∂2p̂1(0, z)

∂ z2
as y → 0, (4.9)
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where

p̂0,y y y(0, z) = −2 sin π (α0 − 1) Γ (α0)

n=∞∑
n=−∞
n
=0

π′′′
n
(0, 0)ã(0)

n einz/l . (4.10)

The wall layer solution is expected to decay relative to the Blasius velocity and,
therefore, exhibit linear behaviour when x � 1 even when it is nonlinear in the vicinity
of the roughness, which suggests that {U − λY, V, W, P } should behave like a small
perturbation of the original Blasius flow U = λY and, therefore, satisfy the linear
equations

∂(U − λY )

∂x
+

dV

dY
+

∂W

∂z
= 0, (4.11)

λY
∂(U − λY )

∂x
+ λV +

∂P

∂x
=

∂2U

∂Y 2
, (4.12)

λY
∂W

∂x
+

∂P

∂z
=

∂2W

∂Y 2
(4.13)

far downstream in the flow, whereas {U (1), V (1), W (1), P (1)} must satisfy

∂U (1)

∂x
+

dV (1)

dY
+

∂W (1)

∂z
= 0, (4.14)

λY
∂U (1)

∂x
+ λV (1) +

∂P (1)

∂x
=

∂2U (1)

∂Y 2
, (4.15)

λY
∂W (1)

∂x
+

∂P (1)

∂z
=

∂2W (1)

∂Y 2
(4.16)

there. The spanwise-mean and zero-spanwise-mean components can therefore be
considered separately in the large x downstream region, which is important because
the main boundary-layer solution shows that they behave differently at large x. The
results for the spanwise-mean component are derived in Appendix A and only the
spanwise-varying component (which is the one of principal interest) is dealt with here.

Since the corresponding zerorth- and first-order wall pressures P (x, z) − P̄ (x) and
P (1)(x, z)− P̄ (1)(x) are assumed to decay like x−αi for i = 0, 1 as x → ∞, and since (4.1)–
(4.5) show that the spanwise variable pressure must decay out more rapidly than the
streamwise velocity, these equations can be shown to possess similarity solutions of
the form

W = x2/3−α0W̃0(η, z), W (1) = x2/3−α1W̃1(η, z), (4.17)

U − Ū = x5/3−α0Ũ 0(η, z), U (1) − U (1) = x5/3−α1Ũ 1(η, z) (4.18)

and

V − V̄ = x1−α0λ−1/3Ṽ0(η, z), V (1) − V (1) = x1−α1λ−1/3Ṽ1(η, z), (4.19)

where

η ≡ λ1/3Y/x1/3, (4.20)

and Ũ j , Ṽj , W̃j satisfy

−
[
η

3

∂Ũ j

∂η
+

(
αj − 5

3

)
Ũ j

]
+

∂Ṽj

∂η
+

∂W̃j

∂z
= 0, (4.21)
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∂2Ũ j

∂η2
+ η

[
η

3

∂Ũ j

∂η
+

(
αj − 5

3

)
Ũ j

]
= Ṽj , (4.22)

∂2W̃j

∂η2
+ η

[
η

3

∂W̃j

∂η
+

(
αj − 2

3

)
W̃j

]
= λ−2/3 ∂

∂z
p̂j (0, z), (4.23)

subject to the boundary conditions

Ũ j (0, z) = Ṽj (0, z) = W̃j (0, z) = 0. (4.24)

Equations (3.1), (3.20)–(3.23), (4.7)–(4.9) and (4.17)–(4.20) show that these solutions
will match onto the main boundary-layer solution if we set

α1 = α0 − 1/3, (4.25)

and require that

W̃j (η, z) → 1

(αj − 1)λ2/3η

∂ p̂j (0, z)

∂ z
, (4.26)

Ũ 0(η, z) → 1

(α0 − 1)(α0 − 2)λ2/3 η

∂2p̂0(0, z)

∂ z2
(4.27)

and

Ũ 1 (η, z) → p̂0,y y y(0, z)

(α0 − 1)(α0 − 2) 2λ
+

1

(α1 − 1)(α1 − 2) λ2/3η

∂2p̂1(0, z)

∂ z2
, (4.28)

as η → ∞, where p̂0,y y y(0, z) is given by (4.10).

Eliminating Ṽj from (4.21) and (4.22) yields

∂3Ũ j

∂η3
+

η

3

[
η
∂2Ũ j

∂η2
+ (3α0 − 4 − j )

∂Ũ j

∂η

]
+ W̃j,z = 0, (4.29)

where Ũ j must satisfy

∂2Ũ j

∂η2
= 0 at η = 0. (4.30)

So setting

Ŵj = −
[

η

3

∂Ûj

∂η
+

(
α0 − 5 + j

3

)
Ûj

]
, (4.31)

where

∂2Ûj

∂η2
+ η

[
η

3

∂Ûj

∂η
+

(
α0 − 5 + j

3

)
Ûj

]
= Cj, (4.32)

or equivalently

∂2Ûj

∂η2
− ηŴj = Cj, (4.33)

implies that

∂Ŵj

∂η
= −η

3

∂2Ûj

∂η2
−
(

α0 − 4 + j

3

)
∂Ûj

∂η
,

∂2Ŵj

∂η2
= −η

3

∂3Ûj

∂η3
−
(

α0 − 1 − j

3

)
∂2Ûj

∂η2
,

(4.34)
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and therefore

∂2Ŵj

∂η2
+ η

[
η

3

∂Ŵj

∂η
+

(
α0 − 2 + j

3

)
Ŵj

]
= −

(
α0 − 1 − j

3

)
Cj . (4.35)

Then since

∂3Ûj

∂η3
+

η

3

[
η
∂2Ûj

∂η2
+ (3α0 − 4 − j )

∂Ûj

∂η

]

=
∂

∂η

{
∂2Ûj

∂η2
+

η

3

[
η
∂Ûj

∂η
+ (3α0 − 4 − j ) Ûj

]}
− 2

3
η
∂Ûj

∂η
− 1

3
(3α0 − 4 − j ) Ûj ,

(4.36)

Ûj must satisfy

∂3Ûj

∂η3
+

η

3

[
η
∂2Ûj

∂η2
+ (3α0 − 4 − j )

∂Ûj

∂η

]
− Ŵj = 0. (4.37)

It therefore follows that W̃j will satisfy (4.23) together with the boundary conditions
(4.24) and (4.26) if we require that

Ûj (0) = 0 and Ûj (η) ∼ η−1 as η → ∞, (4.38)

and set

W̃j =
−1

λ2/3
(
α0 − 1 − j

3

)
Cj

∂p̂j (0, z)

∂z
Ŵj (η) . (4.39)

Then

Ũ j =
1

λ2/3
(
α0 − 1 − j

3

)
Cj

∂2p̂j (0, z)

∂z2
Ûj (η) (4.40)

will be a particular solution of (4.29) that satisfies the boundary conditions (4.24) and
(4.27). However this solution will not in general satisfy the boundary conditions (4.30)
and (4.28) and an appropriate homogeneous solution of (4.29), say ŨH,j , must be
added to the result in order to satisfy these additional conditions. The homogeneous
solution ŨH,j must vanish at η = 0 for j = 0, 1 while ŨH,0 must be of O(η−1) at

infinity and ŨH,1 must asymptote to a non-zero constant there.
Introducing the new independent variable

ς = −η3/9, (4.41)

shows that Ũ j,η satisfies the inhomogeneous confluent hypergeometric equation

ς
∂2Ũ j,η

∂ς2
+

(
2

3
− ς

)
∂Ũ j,η

∂ς
− 3α0 − 4 − j

3
Ũ j,η =

1

η
W̃j,z, (4.42)

which posses the homogeneous solution (Abramowitz & Stegun 1965, pp. 504ff.)

ŨHj ≡ B̃Hj

∫ η

0
1F1

(
3α0 − 4 − j

3
,
2

3
; −η3

9

)
dη + C̃Hj

∫ η

0

η1F1

(
3α0 − 3 − j

3
,
4

3
; −η3

9

)
dη.

(4.43)

But (4.32) and (4.33) can also possess homogeneous solutions, say ÛH,j , ŴH,j , that
vanishes at η = 0 and remain bounded but do not vanish as η → ∞. The most general
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solution is then obtained by putting

Ũ j ⇒ 1

λ2/3
(
α0 − 1 − j

3

)
Cj

∂2p̂j (0, z)

∂z2
[Ûj (η) + ĈH j ÛH,j (η)] + ŨH,j , (4.44)

and the boundary condition (4.30) will be satisfied if C̃Hj can be chosen such that

C̃Hj =
−1

λ2/3
(
α0 − 1 − j

3

)
Cj

∂2p̂j (0, z)

∂z2
Û ′′

j (0) =
−1

λ2/3
(
α0 − 1 − j

3

) ∂2p̂j (0, z)

∂z2
. (4.45)

Inserting the independent variable (4.41) into (4.32) shows that ÛH,j must satisfy
the hypergeometric equation

ς
∂2ÛH,j

∂ς2
+

(
2

3
− ς

)
∂ÛH,j

∂ς
− 3α0 − 5 − j

3
ÛH,j = 0, (4.46)

and it therefore follows that

ÛH,j = η1F1

(
3α0 − 4 − j

3
,
4

3
; −η3

9

)
. (4.47)

Each of the integrals in (4.43) will converge when α0 > (5 + j ) /3 and B̃Hj can then

be chosen so that ŨH0 (η) is proportional to η−(3α0−5−j ) as η → ∞, since

F1

(
3α0 − 4 − j

3
,
2

3
; −η3

9

)
(4.48)

and

η1F1

(
3α0 − 3 − j

3
,
4

3
; −η3

9

)
(4.49)

both decay like η−(3α0−4−j ) as η → ∞. And since

η1F1

(
3α0 − 4 − j

3
,
4

3
; −η3

9

)
∼ η−(3α0−5−j ) as η → ∞, (4.50)

ĈH,j can then be chosen so that

Ũ j → 1

λ2/3
(
α0 − 1 − j

3

)
Cj

∂2p̂j (0, z)

∂z2
Ûj (η) as η → ∞, (4.51)

and the boundary condition (4.27) will then be satisfied.
However the combined integral in (4.43) will converge even when α0 � (5 + j )/3 if

B̃H j is set equal to

B̃H j = − Γ (2 − α0 + j/3)Γ (1/3)C̃Hj

Γ (2 − α0 + (j + 1)/3)Γ (2/3)31/3
, (4.52)

because (see (13.1.9) in Abramowitz & Stegun 1965, p. 504) the integrand will then
be proportional to e−η3/9U ((6 + j − 3α0)/3, 2/3, η3/9) (where U (a, b, z) denotes the
Hypergeometric equation solution defined by (13.1.3) of Abramowitz & Stegun 1965)
and, therefore, vanishes exponentially fast as η → ∞. It will be proportional to e−η3/9

when α0 = (6 + j )/3.
It follows that ĈH,0 can be chosen so that (4.48) is satisfied when α0 = 5/3 and,

therefore, that the boundary condition (4.27) can also satisfied in this case. The
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homogeneous solution ÛH,0 will then be given by

ÛH0 =

∫ η

0

exp

(
−η3

9

)
dη, (4.53)

and the integrand in (4.43) will become

ŨH0 = − C̃H0[Γ (1/3)]2
√

3

2π31/3

∫ η

0

e−η3/9U (1/3, 2/3, η3/9) dη. (4.54)

Equation (4.18) shows that U − Ū will then approach a constant value as x → ∞ at
fixed η and z, i.e. it will not decay as x → ∞ at fixed η, but the linearization (4.11)–
(4.13) will still be valid because the scaled Blasius velocity UB/ε ≈ λY = λ2/3x1/3η

increases like x1/3 as x → ∞ at fixed η. However, this is the smallest value of α0 for
which the linearization will be valid, because matching the wall layer and main-deck
solutions requires that α0 = n/3 for n= 1, 2, . . . (since the inner expansion of the latter
can only involve integral powers of y) and U −Ū will be proportional to x1/3 as x → ∞
at fixed η when α0 is equal to 4/3.

When α0 > 2 (i.e. when u0 decays in the streamwise direction), B̃H0 can always be
chosen so that

ŨH0(η) = o(η−1) as η → ∞. (4.55)

The lower bound for α0 therefore appears to be 7/3 in this case since, as noted above,
matching with the outer solution requires that α0. = n/3 for n= 1, 2, . . . . The constant
ĈH,0 is then arbitrary and can be determined by matching with the upstream solution.

When α0 > 7/3, ĈH1 can be set to zero in (4.44) and the boundary condition (4.28)
can be satisfied for any combination of p̂1z z(0, z) and p̂0,y y y(0, z) by choosing B̃H1 so
that ∫ ∞

0

[
B̃H 11F1

(
3α0 − 5

3
,
2

3
; −η3

9

)
+ C̃H 1η1F1

(
3α0 − 4

3
,
4

3
; −η3

9

)]
dη

=
p̂0,y y y(0, z)

(α0 − 1)(α0 − 2) 2λ
, (4.56)

since the integrals will converge in this case.

5. Outer solution
Equations (4.5) and (4.25) show that the magnitude ε(u1 − ū1) of the first-order

streamwise velocity perturbation will be equal to that of the zeroeth-order streamwise
velocity perturbation u0 − ū0 and cause the expansion (3.1) to breakdown when
εx1/3 = (δx)1/3 = O (1). It is, therefore, necessary to obtain a new expansion in the
‘outer region’ where

X ≡ x∗/x∗
0 = δx + 1 (5.1)

is O(1), which must then be of the form

{u, v, w, p} = {UB(ηB), δVB(X, ηB), 0, 0} + ε3{ ¯̃u(X, y), δ ¯̃v(X, y), 0, ¯̃p(X, y)} + · · ·

+ ε3α−4{ũ(X, y, z), δṽ(X, y, z), δw̃(X, y, z), δ2p̃(X, y, z)} + · · · , (5.2)

where the spanwise-mean component has been separated out from the zero-spanwise-
mean component because of the difference in their orders of magnitude. The spanwise
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variable perturbations {ũ, ṽ, w̃, p̃} are determined from the LBR equations

ũX + ṽy + w̃z = 0, (5.3)

UBũX + VBũy + ũUB,X + ṽUB,y = ũyy + ũzz, (5.4)

UBṽX + VB ṽy + ũVB,X + ṽVB,y = −p̃y + ṽyy + ṽzz, (5.5)

UBw̃X + VBw̃y = −p̃z + w̃yy + w̃zz, (5.6)

subject to the transverse boundary conditions

ũ, ṽ, w̃ = 0; for y = 0; ũ, ṽ, w̃, p̃ → 0 as y → ∞, (5.7)

and appropriate upstream matching conditions. The spanwise mean solution ũ(X, y),
δṽ(X, y) is determined from the two-dimensional constant pressure linearized
boundary-layer equations (see (A 25)).

5.1. Main boundary layer

When X → 1 and y = O(1), (5.3)–(5.6) possess a power series solution of the form

ũ =
1

(X − 1)α−2

∞∑
k=0

(X − 1)kũ(0)
k (y, z) +

1

(X − 1)α−7/3

∞∑
k=0

(X − 1)kũ(1)
k (y, z), (5.8)

{
ṽ

w̃

}
=

1

(X − 1)α−1

∞∑
k=0

(X − 1)k
{

ṽ
(0)
k (y, z)

w̃
(0)
k (y, z)

}
+

1

(X − 1)α−4/3

∞∑
k=0

(X − 1)k
{

ṽ
(1)
k (y, z)

w̃
(1)
k (y, z)

}
,

(5.9)

p̃ =
1

(X − 1)α

∞∑
k=0

(X − 1)kp̃(0)
k (y, z) +

1

(X − 1)α−1/3

∞∑
k=0

(X − 1)kp̃(1)
k (y, z), (5.10)

where ũ
(j )
0 , ṽ

(j )
0 , w̃,

(j )
0 p̃

(j )
0 satisfy(

2 − α +
j

3

)
ũ

(j )
0 + ṽ

(j )
0,y + w̃

(j )
0,z = 0, (5.11)

(
2 − α +

j

3

)
UB(y)ũ(j )

0 + ṽ
(j )
0 U ′

B(y) = 0, (5.12)

(
1 − α +

j

3

)
UB(y)

{
ṽ

(j )
0

w̃
(j )
0

}
= −

{
p̃

(j )
0,y

p̃
(j )
0,z

}
, (5.13)

and ũ
(j )
1 , ṽ

(j )
1 , w̃

(j )
1 , p̃

(j )
1 satisfy the equations given in Appendix B. The inner expansion

of the outer solution as X → 1 is therefore

ε3α−4ũ ∼ ε3α−4

(X − 1)α−2

[
ũ

(0)
0 (y, z) + (X − 1)ũ(0)

1 (y, z) + · · ·
]

+
ε3α−4

(X − 1)α−7/3
[ũ(1)

0 (y, z) + (X − 1)ũ(1)
1 (y, z) + · · · ]

= ε2

[
ũ

(0)
0 (y, z)

xα−2
+ δx1−αũ

(0)
1 (y, z) + · · ·

]
+ ε3

[
ũ

(1)
0 (y, z)

xα−7/3
+ δx4/3−αũ

(1)
1 (y, z) + · · ·

]
,

(5.14)
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δε3α−4

{
ṽ

w̃

}
∼ δε3α−4

(X − 1)α−1

[{
ṽ

(0)
0 (y, z)

w̃
(0)
0 (y, z)

}
+ (X − 1)

{
ṽ

(0)
1 (y, z)

w̃
(0)
1 (y, z)

}
+ · · ·

]

+
δε3α−4

(X − 1)α−4/3

[{
ṽ

(1)
0 (y, z)

w̃
(1)
0 (y, z)

}
+ (X − 1)

{
ṽ

(1)
1 (y, z)

w̃
(1)
1 (y, z)

}
+ · · ·

]

= ε2

[
1

xα−1

{
ṽ

(0)
0 (y, z)

w̃
(0)
0 (y, z)

}
+ δx2−α

{
ṽ

(0)
1 (y, z)

w̃
(0)
1 (y, z)

}
+ · · ·

]

+ε3

[
ṽ

(1)
0 (y, z)

xα−4/3

{
ṽ

(1)
0 (y, z)

w̃
(0)
0 (y, z)

}
+ δx7/3−α

{
ṽ

(1)
1 (y, z)

w̃
(1)
1 (y, z)

}
+ · · ·

]
, (5.15)

ε3α−4δ2 p̃ ∼ ε3α−4δ2

(X − 1)α

[
p̃

(0)
0 (y, z) + (X − 1)p̃(0)

1 (y, z) + · · ·
]

+
ε3α−4δ2

(X − 1)α−1/3

[
p̃

(1)
0 (y, z) + (X − 1)p̃(1)

1 (y, z) + · · ·
]

= ε2

[
p̃

(0)
0 (y, z)

xα
+

δ

xα−1
p̃

(0)
1 (y, z) + · · ·

]
+ ε3

[
p̃

(1)
0 (y, z)

xα−1/3
+

δ

xα−4/3
p̃

(1)
1 (y, z) + · · ·

]
.

(5.16)

Eliminating ũ
(0)
0 , ṽ

(0)
0 , w̃

(0)
0 implies that p̃

(j )
0 satisfies

∂2p̃
(j )
0

∂y2
+

∂2p̃
(j )
0

∂z2
− 2

U ′
B

UB

∂p̃
(j )
0

∂y
= 0, (5.17)

but

U 2
B

d

dy

[
1

U 2
B

dπn(y, 0)

dy

]
−
(n

l

)2

πn(y, 0) = 0 (5.18)

implies that p̂j satisfies

∂2p̂j

∂y2
+

∂2p̂j

∂z2
− 2

U ′
B

UB

∂p̂j

∂y
= 0. (5.19)

Then since p̃
(j )
0 (y, z) and p̂j (y, z) both satisfy the same equation, it follows from

(4.25) that the inner and outer solutions will only match if we set

α = α0, (5.20)

p̃
(0)
0 (y, z) = p̂0(y, z), (5.21)

and

p̃
(1)
0 (y, z) = p̂1(y, z). (5.22)

Equations (5.8)–(5.10) suggest that ũ will begin to increasing when (X −
1) > ũ

(0)
0 (y, z)/ũ(0)

1 (y, z). But this solution does not satisfy the correct wall boundary

condition since (3.15), (4.3), (5.13) and (5.21) show that w̃
(0)
0 → ∞ as y → 0. In fact it

follows from the method of Frobenius that

p
(j )
0 ∼ p

(j )
0 (0, z) +

y2

2

∂2

∂z2
p

(j )
0 (0, z) +

y3

3!

(
∂3p

(j )
0

∂y3

)
y=0

(5.23)
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when p̃
(0)
0 (0, z) is non-zero, which implies that

w̃
(j )
0 ∼ 1(

α − 1 − j

3

)
λy

∂p
(j )
0 (0, z)

∂z
, (5.24)

ṽ
(j )
0 ∼ 1(

α − 1 − j

3

)
λ

∂2

∂z2
p

(j )
0 (0, z) +

y

2
(
α − 1 − j

3

)
λ

(
∂3p

(j )
0

∂y3

)
y=0

, (5.25)

ũ
(j )
0 ∼ 1(

α − 2 − j

3

) (
α − 1 − j

3

)
yλ

∂2

∂z2
p

(j )
0 (0, z)

+
1

2
(
α − 2 − j

3

) (
α − 1 − j

3

)
λ

(
∂3p

(j )
0

∂y3

)
y=0

. (5.26)

This breakdown occurs because the lowest order terms in the expansion (5.8)–(5.10)
satisfy inviscid equations and, therefore, cannot satisfy the viscous wall boundary
conditions. This means that it is necessary to derive new solutions in a viscous wall
layer at the surface of the plate.

5.2. Wall layer

These solutions must satisfy the linearized boundary-layer equations (4.11)–(4.16)
whose viscous and inertial terms will be of the same order of magnitude when

y/X ∼ 1/y2, (5.27)

which suggests introducing the similarity variable (4.20)

η =
λ1/3y

(X − 1)1/3
(5.28)

rewritten in terms of the outer variables. It follows from the spanwise momentum
equation (5.6) and the expansion (5.10) that these terms will balance with the spanwise
pressure gradient if w̃ is of the form

w̃ = (X − 1)2/3−α
[
W̃0 (η, z) + (X − 1)1/3 W̃1 (η, z)

]
(5.29)

while continuity and the streamwise momentum equation (5.4) then imply that ũ and
ṽ must be of the form

ũ = (X − 1)5/3−α[Ũ 0(η, z) + (X − 1)1/3Ũ 1(η, z)] (5.30)

and

ṽ = (X − 1)1−αλ−1/3[Ṽ0(η, z) + (X − 1)1/3Ṽ1(η, z)]. (5.31)

Inserting these into the LBR equations (5.3)–(5.6) shows that Ũ j , Ṽj , W̃j must
satisfy (4.21)–(4.23) with α1 and α0 given by (4.25) and (5.20) subject to the boundary
condition (4.24). However, matching with (5.24)–(5.26) implies that Ũ j , W̃j must also
satisfy conditions (4.26)–(4.28) and therefore that the (outer) wall layer solution is
identical to the asymptotic wall layer of § 4–in fact it is merely the continuation of
that layer into the outer region. This shows that there is an overlap domain in which
the asymptotic form of the inner solution matches onto the outer LBR equation
solution that satisfies (5.8)–(5.10) as X → 1.
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6. Linear solution
The ‘outer’ far wake flow is completely determined by the induced (inner solution)

wall pressures in the general nonlinear solution constructed in the previous sections.
But this solution must be found numerically. The present section considers the h � 1
linearized solution in order to fix the inner wall pressure decay rate α = α0 and
explicitly relate these pressures to the roughness geometry.

6.1. The inner solution

When h � 1, the leading order wall layer solution and its first-order correction posses
the expansions

{U, V, W, P (x, z)} = {λY, 0.0, 0} + h{U (0)
1 , V

(0)
1 , W

(0)
1 , P

(0)
1 (x, z)}

+ h2{U (0)
2 , V

(0)
2 , W

(0)
2 , P

(0)
2 (x, z)} + · · · , (6.1)

and

{U (1), V (1), W (1), P (1)} = h{U (1)
1 , V

(1)
1 , W

(1)
1 , P

(1)
1 } + · · · , (6.2)

where {U (j )
1 , V

(j )
1 , W

(j )
1 , P

(j )
1 } satisfy the linear equations (4.11)–(4.16) together with

the boundary conditions (3.27) and (3.36) and the matching conditions (3.29) and
(3.35).

Equations (3.27) and (3.36) then imply that

�

U
(i)

n =
�

W
(i)

n =
�

V
(i)

n = 0, at Y = 0, (6.3)

while (3.29) and (3.35) imply that

�

U
(0)

n = λ
�

F n(k) + O(Y −1),
�

W
(0)

n = O(Y −1) as Y → ∞, (6.4)

and
�

U
(1)

n (k) → −π′′′
n (0, k)

2λk2
P̃ (0)

n ,
�

W
(1)

1 = O(Y −1) as Y → ∞, (6.5)

where {
�

U
(i)

n (Y, k),
�

V
(i)

n (Y, k),
�

W
(i)

n (Y, k),
�

P
(i)

n (k),
�

F n(k)} is defined by

{U (i)
1 , V

(i)
1 , W

(i)
1 , P

(i)
1 (x, z), F̃ (x, z)}

=

n=∞∑
n=−∞

∫ ∞

−∞
{

�

U
(i)

n (Y, k),
�

V
(i)

n (Y, k),
�

W
(i)

n (Y, k),
�

P
(i)

n (k),
�

F n(k)}ei(nz/l+kx) dk, (6.6)

and it follows from the linearized boundary-layer equations (4.11)–(4.16) that

ik
�

U
(i)

n +
d

�

V
(i)

n

dY
+ i

(n

l

)
�

W
(i)

n = 0, (6.7)

ikλY
�

U
(i)

n + λ
�

V
(i)

n + ik
�

P
(i)

n =
d2

�

U
(i)

n

dY 2
, (6.8)

ikλY
�

W
(i)

n + i
(n

l

)
�

P
(i)

n =
d2

�

W
(i)

n

dY 2
(6.9)

for i = 0, 1 and, therefore, that

ikλY
d

�

U
(i)

n

dY
− i

(n

l

)
λ

�

W
(i)

n =
d3

�

U
(i)

n

dY 3
, (6.10)
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d2
�

U
(i)

n

dY 2
= ik

�

P
(i)

n forY = 0, i = 0, 1, (6.11)

�

P
(i)

n = P̃ (i)
n , (6.12)

�

W
(i)

n = − inπ

(ikλ)2/3 l
P̃ (i)

n (k)

[
Gi(η̄) − 1√

3
Ai(η̄)

]
, (6.13)

�

U
(i)

n = −λπP̃ (i)
n (k)

(ikλ)5/3

{(n
l

)2
[
Gi(η̄) − 1√

3
Ai(η̄)

]
− Γ

(
1

3

)
31/3

π

[(n

l

)2

+ k2

] ∫ η̄

0

Ai(η̄) dη̃

}
(6.14)

and

λ
�

V
(i)

n (k) = −ikλY
�

U
(i)

n (k) − ik
�

P
(i)

n +
d2

�

U
(i)

n (k)

dY 2
(6.15)

for i = 0, 1, where

η̄ ≡ (ikλ)1/3 Y, (6.16)

and the Ai and Gi denote the Airy functions defined in Abramowitz & Stegun (1964,
pp. 446, 448). Then since

Gi(η̄) ∼ 1

πη̄
=

1

π(ikλ)1/3Y
as Y → ∞ (6.17)

it follows from (6.4), (6.5) and (6.14) that

P̃ (0)
n (k) =

(ikλ)5/391/3

[(n/l)2 + k2]Γ (1/3)

�

F n(k), (6.18)

P̃ (1)
n (k) =

π′′′
n (0, k)91/3P̃ (0)

n (k)

2[(n/l)2 + k2]Γ (1/3)(ikλ)1/3
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(ikλ)4/392/3π′′′
n (0, k)

2{[(n/l)2 + k2]Γ (1/3)}2

�

F n(k), (6.19)

�

W
(0)

n (k) ∼ − i n 91/3(ikλ)2/3

Y l[(n/l)2 + k2] Γ (1/3)

�

F n(k), (6.20)

and

�

U
(0)

n (k) − λ
�

F n(k) ∼ − λ(9)1/3(n/l)2

Γ (1/3)[(n/l)2 + k2]

�

F n(k)

(ikλ)1/3Y
, (6.21)

as Y → ∞.
We now require that F̃ (x, z) = O(x−1) as x → ∞ and, consequently, that F̄n(k) will

remain bounded (and, in general, non-zero) at k = 0. It then follows from (6.18) and
(6.19) that

α = α0 = 8/3, (6.22)

which means that the coefficients in (4.3) are now given by

ã(0)
n =

2hl2λ5/391/3

n2Γ (1/3)

�

F n(0), (6.23)

ã(1)
n =

hλ4/3l492/3π′′′
n (0, 0)

n4Γ (1/3)2
�

F n(0). (6.24)
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Equations (6.6), (6.13) and (6.18) imply that

W
(0)
1 =

π 91/3

Γ (1/3)

n=∞∑
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(6.26)
and consequently that
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Gi((iκ)1/3η) − 1√

3
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(6.27)

and

W
(1)
1 =

−π 92/3

x5/32[Γ (1/3)]2
×
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∫ ∞

−∞
π′′′
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(
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)
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3
Ai((iκ)1/3η)
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l3

�

F n(0)

n3
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Ŵp1(η) as x → ∞ with η = O(1), (6.28)

where η is defined by (4.20) and finally

Ŵpj (η) ≡
∫ ∞

−∞
(κi)1−j/3

[
Gi((iκ)1/3η) − 1√

3
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3
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]
eiκdκ

for j = 0, 1. The Fourier transformed roughness shape function
�

F n(k) is assumed
to be analytic in the upper half-plane (i.e. the roughness height is assumed to
be identically zero for x > 0) so that the contour C can be taken as shown in
figure 2.

Equations (6.27) and (6.28) are clearly consistent with (4.17) and (4.25).

6.2. The outer solution

Since, as noted in § 5, matching with the inner solution requires that
p̃

(j )
0 (y, z) = p̂j (y, z), it follows from (4.2)–(4.3), (6.23) and (6.24) that
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(0)
0 (y, z) = p̂0(y, z) =

10
√
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=0
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�

F n(0)

n2
einz/l, (6.30)
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Re κ

Figure 2. Deformation of inversion contour.

and

p̃
(1)
0 (y, z) = p̂1(y, z) =

2
√

3 92/3λ4/3

9Γ (1/3)
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n
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πn(y, 0)
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n4
einz/l . (6.31)

But (6.22) implies that (4.43) becomes

ŨH j,η = B̃H j 1F1

(
4 − j

3
,
2

3
; −η3

9

)
+C̃Hjη1F1

(
2 − j

3
+ 1, 1 +

1

3
; −η3

9

)
for j = 0, 1.

(6.32)
And since (by (13.4.10) in Abramowitz & Stegun 1965, p. 507)
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3
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3
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)
(6.34)

it follows that

ŨH0 = η

[
B̃H01F1

(
1

3
,
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3
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9

)
+ C̃H0

1

2
η1F1
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3
; −η3
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. (6.35)

Equation (4.52) requires that (by (13.1.5) in Abramowitz & Stegun 1965, p. 504)

B̃H 0 = −
[
Γ (1/3)

Γ (2/3)

]2
C̃H0

(23)1/3
, (6.36)

and, therefore, (by (13.1.9) in Abramowitz & Stegun, 1965)

ŨH0 = −η
√

3 C̃H0 [Γ (1/3)]2

31/34π
e−η3/9U

(
1

3
,
2

3
,
η3

9

)
, (6.37)

which shows that ŨH,0 actually decays exponentially fast as η → ∞.
Equation (4.32) now possesses the homogeneous solution

Û1 j = η(1−j )e−η3/9, (6.38)
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and it therefore follows from the method of variation of parameters that the solutions
to (4.32) that satisfy the required boundary condition (4.38) are given by

Û0 =
C0

2
ηe−η3/9

[∫ η

0

eη̃3/9 dη̃ + Ĉ0

]
, (6.39)

Û1 = C1
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η̃eη̃3/9 dη̃ + Ĉ1e
−η3/9

∫ η

0

eη̃3/9 dη̃

]
, (6.40)

where Ĉj are arbitrary constants.
The hypergeometric function in the second term on the left side of (4.53)

becomes

η1F1
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9

)
= e−η3/9, (6.41)

when α0 = 8/3. And since∫ ∞
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3
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3
Γ (2/3) (6.42)

it follows from (6.30) and (6.31) that

B̃H,1 = 0, (6.43)

and, therefore, that C̃H,j is given by (4.45). Then since
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the function (6.29) satisfies (4.35) with
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and the function
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satisfies equations (4.31) and (4.32) with Ŵj = Ŵp j . It, therefore, follows that Ŵp j and

Ûp j are given by (6.39) and (6.40) and that
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and
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or

Ĉ1 = 0. (6.50)

It now follows that

Ŵj = − 1
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e−η3/9

[
Γ

(
2 − j

3

)
η−j

∫ η

0

η̃jeη̃3/9 dη̃ − δj,0

2π√
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. (6.51)

7. Numerical procedures
7.1. The outer linear boundary region problem for the linear inner solution

A finite-difference approach on a staggered grid (Harlow & Welch 1965) was used
to solve the LBR equations (5.3)–(5.6) in order to avoid the decoupling between
pressure and velocities. Periodic boundary conditions were imposed in the spanwise
direction. The numerical method is similar to the one used in Leib et al. (1999) with
a grid-convergence approach similar to that used in Goldstein & Sescu (2008). The
pressure variable πn(y, 0) in (4.3) was found by using a second-order finite difference
scheme, which requires a tri-diagonal matrix inversion by the Thomas algorithm
(Tannehill, Anderson & Pletcher 1997, Appendix A), to solve (5.18) subject to the
boundary conditions πn(0, 0) = 1 and πn(y, 0) → 0 as y → ∞.

The relevant LBR equation solutions must satisfy the initial or upstream matching
conditions given in Appendix C, with the zeroeth- and first-order pressure variables
now given explicitly by (6.30) and (6.31). The confluent hypergeometric function
η1F1 (a, b; z) was computed by using (13.1.2) of Abramowitz & Stegun (1965, p. 504)
for small |z|, and the asymptotic expansion (13.5.1) (Abramowitz & Stegun 1965,
p. 508) for large |z| with the two curves being matched with spline functions whenever
necessary. Simpson’s rule was used for the numerical integrations that appear in these
results.

7.2. The inner nonlinear problem

An iterative scheme based on that of Smith (1991) was used to solve the full (nonlinear)
problem (3.24)–(3.29). (This was also the methodology used in Choudhari & Duck
1996.) Differentiating the x-momentum equation (3.26) with respect to x, and the
z-momentum equation (3.25) with respect to z, and adding the results leads to the
equation

U
∂U ∗

∂x
+ V ∗ ∂U

∂Y
= −E∗ +

∂2U ∗

∂Y 2
− S(x, Y, z), (7.1)

where

U ∗ =
∂U

∂x
+

∂W

∂z
, (7.2)

V ∗ =
∂V

∂x
, (7.3)

E∗(x, z) =
∂2P

∂x2
+

∂2P

∂z2
, (7.4)
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S(x, Y, z) =

(
∂U

∂x

)2

+ V
∂2U

∂x∂Y
+ 2

(
∂W

∂x

)(
∂U

∂z

)
+ W

∂2U

∂x∂z
+

∂

∂z

(
V

∂W

∂Y
+W

∂W

∂z

)
.

(7.5)

The continuity equation (differentiated with respect to x) becomes

∂U ∗

∂x
+

∂V ∗

∂Y
= 0. (7.6)

The resulting system, in particular (7.1) and (7.2), may be regarded as quasi-two-
dimensional, and, therefore, suggests introducing the quasi-stream function Ψ ∗

U ∗ = Ψ ∗
Y , V ∗ = −Ψ ∗

x (7.7)

in order to satisfy (7.6). The resulting problem was then solved iteratively by
approximating the z-momentum equation, continuity and (7.1) using a combination
of Crank–Nicolson differencing (in x) and second-order central differencing in both
Y and z. Having estimated U , V and W (starting with an initial guess), the finite
difference approximation to (7.1) was then solved (in a standard x-wise marching
manner), in conjunction with (7.6), to yield estimates for Ψ ∗, U ∗, V ∗ and E∗(x, z).
(An analogous procedure could be used for the two-dimensional problem of Smith
1976a,b) Next the Poisson’s equation (7.4) for the pressure was approximated by
second-order central differences, with symmetry/antisymmetry conditions at the two
extremes of z, Dirichlet conditions at the upstream extremum of x and Neumann
conditions at the downstream extremum of x; the resulting system (using the values of
E∗(x, z) evaluated in the previous step) was then solved in a direct manner, exploiting
the sparseness properties of the system. Next the finite-difference approximation
to the z-momentum equation was solved (in a marching manner, not dissimilar
from that used on (7.1)), to determine W , utilizing the pressure values obtained
in the preceding step; finally U and V were simply deduced from (7.2) and (7.3).
The entire procedure was then repeated, until sufficient convergence was achieved.
This procedure was also used to obtain numerical solutions to the ‘linear’ (h � 1)
problem.

8. Results and discussion
This paper considers the wakes behind an array of roughness elements with

spanwise wavenumber β∗ = 1/(l x∗
0δ). The focus being on the far wake region where

the spanwise mean component of the flow is governed by the two-dimensional zero
pressure gradient linearized boundary-layer equations and the spanwise variable
component is governed by the LBR equations (5.3)–(5.6). Then since the deviation
{ ¯̃u(X, y), δ ¯̃v(X, y), 0} of the spanwise mean velocity vector from the Blasius flow must
decay out very quickly on the long streamwise length scale X, the main emphasis is
on the spanwise variable component {ũ, δṽ, δw̃, δ2p̃}.

We have shown that the spanwise variable pressure decays like x−α when the
short streamwise length scale x becomes large and that α = 8/3 in the linear case,
although the analysis of § 4 clearly shows that α can be as small as 5/3 in the
general nonlinear case. But an x−α ln(x) decay rate is also possible since the wake
equations (4.11)–(4.13) have an asymptotic solution of this form which we ignore
for now. It, therefore, follows from (5.2) that the (normalized) spanwise variable
component of the streamwise velocity perturbation ε3α−4ũ will be proportional to
U∞R−1/6 when α takes on its minimum value and, as can be seen from (5.11) to (5.13)
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and from (6.30) to hε4 in the linear case. But it follows from (2.1) that h is essentially
equal to k/εδ∗ = k/ε4x∗

0 , where k denotes the dimensional roughness height in the
usual notation. So the (normalized) spanwise variable component of the streamwise
velocity perturbation will then be proportional to k/x∗

0 independent of Reynolds
number.

The relevant solutions to the LBR equations (5.3)–(5.6) must satisfy the upstream
matching conditions (5.14)–(5.16) in the main boundary layer where y =O(1) and
match onto the solution (5.29)–(5.31) in the wall layer where η = O(1). The upstream
matching can be implemented by first forming a uniformly valid ‘composite’ solution
for the two regions and then matching the LBR solutions with the result, which is
written out in Appendix C.

Since the outer solution is determined from linear equations it is appropriate
to divide it into its spanwise Fourier components with the nth component, say
ε3α−4{Ũ n, δṼn, δW̃n, δ

2P̃ n}, determined by

ε3α−4{ũ, δṽ, δw̃, δ2p̃} = ε3α−4

∞∑
n=−∞
n
=0

einz/l{Ũ n, δṼn, δW̃n, δ
2P̃ n}. (8.1)

These components will be completely independent when the inner solution is
linear, but will be coupled through the upstream boundary conditions when it is not.
However, it makes sense to consider the scaled modal energy components

En(X) ≡
∫ ∞

0

[
|Ũ n(X, y)|2 + δ2|Ṽn(X, y)|2 + δ2|W̃n(X, y)|2

]
dy (8.2)

of the profile averaged kinetic energy

E(X) ≡ δ(ε3α−4)2
∫ ∞

0

[
|ũ(X, y)|2 + δ2|ṽ(X, y)|2 + δ2|w̃(X, y)|2

]
dy, (8.3)

even when the inner solution is nonlinear. But most of the computations were carried
out for the linear case, where the modal energies are completely independent. The
linear solution has the additional advantage of greatly simplifying the treatment of
multiple roughness rows since the solutions for each individual row can be superposed
and the inner streamwise length scale of the roughness elements is asymptotically
negligible compared to the streamwise length scale on which the far wakes evolve.
The linear far wake solution for identical rows of roughness elements can, therefore,
be found by simply multiplying the single row solution by the number of rows.

8.1. The linear problem

Specific results were obtained for two different roughness shape functions: the sharply
discontinuous but very compact function

F̃ (x, z) =

{
1, 0 � |z − πl| � d/2,

0, otherwise,
(8.4)

used by Choudhari & Fischer (2005) to model the experimental configuration of
White & Ergin (2003) and referred to here as Case 1 and the very smooth but less
localized function

F̃ (x, z) = exp{−[x2 + (z − πl)2]/d2}, (8.5)

referred to here as Case 2.
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Energy decay from maximum energy
Energy growth factors over x = (1.5,16) to x = 16

Roughness parameters Case 1 Case 2 Case 1 Case 2

l = 5 and d/l = 2.76 246 246 1.62 1.62
l = 10 and d/l = 1.38 753 753 1.00 1.00
l = 5 and d/l = 1.38 246 246 1.62 1.62

Table 1. Energy growth factors

Equations (5.11)–(5.13), (6.30) and (8.1) show that nth spanwise Fourier component

ε3α−4{Ũ n, δṼn, δW̃n, δ
2P̃ n} of ε3α−4{ũ, δṽ, δw̃, δ2p̃} will be proportional to

�

F n(0) where

�

F n(0) =
(−1)nl

2πD2

∫ 1

0

J0(nDx)x dx, (8.6)

in Case 1 and
�

F n(0) =
lD2

π
e−(nD)2−inπRe erf (π/2D + inD), (8.7)

in Case 2 where

D ≡ d/2l, (8.8)

which suggests that ε3α−4ũ will actually be proportional to k/δx∗
0 for fixed l∗/x∗

0 . But
since k/x∗

0 is proportional to
√

δ3Rek , where Rek denotes the Reynolds number based
on roughness height and the boundary-layer velocity at this height, ε3α−4ũ should be
proportional to

√
Rek/R

1/4. The profile averaged energy (8.3), which is approximately
equal to

E0 ≡ δ

∫ ∞

0

|ε3α−4ũ(X, y)|2 dy (8.9)

when X − 1 is sufficiently large, should, then be proportional to Rek .
Figure 3 is a plot of the scaled modal energy components (8.2) of the profile

averaged energy (8.3) for Cases 1 and 2 with various values of l and D. We have put
δ =0 because the crossflow terms only contribute at very small values of the
Reynolds number R when X − 1 is sufficiently large. The figure shows that there
is a sharp minimum in the modal energies between X =1.1 and X =1.5, which can
be interpreted as the initiation point for the transient energy growth over a finite
interval downstream of this location. The maximum modal energy appears to be an
increasing function of the array wavelength relative to the boundary-layer thickness
at the roughness location, l = l∗/δ∗ for roughness elements with fixed plan form size.
Notice that the energy drops off very quickly with increasing harmonic index n

in both cases. There seems to be very little difference between the two cases with
the main difference occurring at the larger d/l value, where the final amplitude is
significantly larger in Case 2 – presumably because the wake interference effects are
larger.

Table 1 shows the growth factors associated with the increase in modal energy E 1(x )
of the fundamental harmonic from the minimum energy location in figures 3(a) and
3(b) up to its maximum within the downstream region. Notice that the value of the
growth factor is nearly independent of the geometry of the roughness element (either
shape or planform size), being primarily determined by the array spacing parameter l.
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Figure 3. Scaled modal energies En for n= 1, 2, 3 as a function of streamwise variable X,
corresponding to (a) Case 1 and (b) Case 2.

Choudhari & Fisher (2005), who performed Navier–Stokes computations for the case
l = 6.57, d/l = 2.1, reported an energy growth factor of O(300) at the relatively large
roughness heights of Rek =119 and 162. It is worth noting that the linear theory
predictions are more or less consistent with the simulation results.

While (5.2) shows that the energies will be relatively small in the compact linear
case being considered here, figures 3(a) and 3(b) clearly show that the wakes can
persist over very long streamwise distances. The persistence of the wakes can also be
gauged by the relatively modest values of the decay factor in table 1, which measures
the reduction in the modal energy of the fundamental harmonic from its maximum
over the interval x = (1, 5, 16) to that at the ‘outflow’ of this interval (x =16) in
figures 3(a) and 3(b).



150 M. E. Goldstein, A. Sescu, P. W. Duck and M. Choudhari

106

105

104

103

E
1
(X

)

102

101

100

1 1.02 1.04

X
1.06 1.08 1.10 1 1.02 1.04

X
1.06 1.08 1.10

10–1

(a)
LBR

First-order upstream conditions
Second-order upstream conditions

LBR

First-order upstream conditions
Second-order upstream conditions

104

103

102

E
2
(X

)

101

100

10–1

10–2

(b)

Figure 4. Modal energy as a function of streamwise variable X, calculated from the LBR
equation solution with the first-order and second-order upstream (a) for first mode and
(b) for second mode.

Figure 4 compares the modal energies in the first and second modes computed from
the one and two term asymptotic expansions (C 1) to (C 3) of the initial conditions
with the corresponding result computed from the full LBR equation solution (with
initial conditions computed from the full two term expansion) for Case 1. (The one
term expansion corresponds to using only the first square bracketed term in these
equations.) It shows, among other things, that there is an ‘overlap region’ where the
LBR solution matches onto the two layer ‘inner solution’ which describes the flow in
the vicinity of the roughness. This region is relatively short and extends downstream
to about 1.5 % of the downstream position x∗

0 of the roughness for the first mode
and about 1 % for the second. The two term expansion shows only slightly better
agreement than the one term expansion. The amount of improvement decreases with
increasing l/n and only occurs for very small values of X − 1 when l/n is greater
than about 4, i.e. the two term expansion only becomes optimal at very small X − 1
when l/n is large. Case 2 behaves in a similar fashion.

Figure 5 is a comparison with Choudhari and Fischer’s (Choudhari & Fischer
2005) numerical computation of the unscaled modal energies. The agreement appears
to be reasonably good for the first mode and relatively poor for the second. But
the latter contains very little energy and does not have much effect on the overall
accuracy of the computation. The two results show a fair amount of disagreement
at smaller values of X, where the numerical solution decays more slowly than the
analytical result. This may, at least in part, be due to the fact that only the outer
expansion of the analytical solution is plotted here, while the solution at small X

is most appropriately described by a composite expansion of the inner and outer
solutions which, among other things, would remain finite as X → 1. The discrepancy
may also be due to the fact that the nonlinear terms seem to make the inner solution
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Figure 5. Comparison with the numerical solution of Choudhari & Fischer (2005) for
R = 2.5 × 105, x∗

0 = 230 mm, l = 6.57, d = 13.8, h = 1.2.

decay more slowly even for relatively small values of h (see discussion of nonlinear
solution below), or to the fact that the spanwise mean distortion decays out much
more slowly than the spanwise variable component – which could contaminate the
numerical computations – or it could even be due to the well-known inaccuracy of
triple-deck-type computations at moderate Reynolds numbers.

Figures 6 and 7 are plots of the spanwise variable component of the scaled
streamwise velocity for Case 1 along the centreline of the elements and along a line
half way between the roughness elements respectively. They show that the wakes are
initially concentrated in the wall layer but rapidly spread out and move toward the
outer edge of the boundary layer as they progress downstream. The figures also show
that the velocity defects undergo sign reversals at the downstream locations of the
modal energy minima (i.e. at the algebraic growth initiation points) as do the fuller
profiles between the elements.

The spanwise variable components of the streamwise velocities for Case 2 are
plotted in figures 8 and 9, which show the perturbation profiles along the centreline
of the elements and along a line half way between the centrelines of adjacent roughness
elements, respectively.

8.2. The nonlinear problem

All the computations in this section are based on the smooth roughness shape
function (8.5). Figure 10 displays the spanwise variable component of the pressure
(normalized with respect to hλ5/3) calculated from the numerical solutions to the
inner boundary-layer problem (3.24)–(3.29) with and without the nonlinear terms.
The linear numerical solution is indistinguishable from the analytical result derived
in § 6. These results show that pressures increase faster than linearly with increasing
h, especially near x = 0.



152 M. E. Goldstein, A. Sescu, P. W. Duck and M. Choudhari

16
x = 1.042

x = 1.083
x = 1.116

x = 1.290

x = 1.372

x = 1.496
x = 1.743

x = 2.114

x = 3.189

x = 4.992

14

12

10

y 8

6

4

2

0

u~
–15–20 –10 –5 0 5 10 15

Figure 6. Scaled streamwise velocity perturbation ũ as a function of y for Case 1 at the
spanwise location z = πl with l = 5 and d/l =1.38.
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Figure 7. Streamwise velocity perturbation ũ as a function of y for Case 1 at spanwise
location z = 0 with l = 5 and d/l =1.38.

The numerical solutions are also in good agreement with the analytical result when
the nonlinear terms are retained if the roughness height h is relatively small – of
the order of 0.1 or so. Indeed, the (nonlinear) numerical and linear results are even
in good agreement in the vicinity of the roughness for larger values of h – of the
order of 1.0 or so. Figure 11 confirms that the numerically computed pressures decay
algebraically as x → ∞, but it also shows that the algebraic decay rate α0 changes
from the linear case value of 8/3 to what appears to be the minimum allowable
value of 5/3 in the fully nonlinear case where h = O(1). The intermediate curves are
somewhat ambiguous because they correspond to a superposition of terms with the
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Figure 8. Scaled streamwise velocity perturbation ũ as a function of y for Case 2 at the
spanwise location z = πl. (a) l = 5 and d/l =2.76 (b) l =10 and d/l = 1.38.

two different decay rates. The slower decay rate does not emerge until x becomes
very large for the smaller values of h. These observations were confirmed by detailed
grid studies performed by the authors (but not shown here).

The governing equations are only nonlinear in the vicinity of the roughness elements.
But the difference in α0 between the linear and nonlinear cases (see (5.2)) indicates
that the LBR solution for the former (i.e. the strictly linear) case can only remain valid
when X − 1 =O(1) if h � ε3 – at least in a strict asymptotic sense. But (5.2) shows
that the (unscaled) fully nonlinear modal energies (for h = O(1)) will be larger by a
factor of R = ε−6 than those in the linear case. This means that even relatively mild
nonlinearities in the local inner solution can have a much more significant effect on
the far wakes than on the near field flow. This situation is analogous to the acoustic
far-field from a source that has been expanded in powers of a small parameter with
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the monopole contribution (which would become the dominant term in the far field)
excluded from the lowest order solution (which would correspond to linear solution
in the present case) but not from the higher order terms (which would correspond to
nonlinear solution).

The distinguished scaling occurs when h = O(ε3) and the proper outer expansion
of spanwise variable component of the solution (5.2) becomes

{u, v, w, p} − {ū, v̄, w̄, p̄}
= ε4h{ũ(0)(X, y, z), δṽ(0)(X, y, z), δw̃(0)(X, y, z), δ2p̃(0)(X, y, z)}

+ εh2{ũ(1)(X, y, z), δṽ(1)(X, y, z), δw̃(1)(X, y, z), δ2p̃(1)(X, y, z)} + · · · ,

= ε4h{ũ(0)(X, y, z) + ũ(1)(X, y, z), δ[ṽ(0)(X, y, z) + ṽ(1)(X, y, z)],

δ[w̃(0)(X, y, z) + w̃(1)(X, y, z)], δ2[p̃(0)(X, y, z) + p̃(1)(X, y, z)]} + · · · , (8.10)
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where {ũ(0), ṽ(0), w̃(0), p̃(0)} denotes the outer expansion of the linear (inner) solution
and {ũ(1), ṽ(1), w̃(1), p̃(1)} is the solution of the of the boundary value problem (5.3)–
(5.7) that matches onto the dominant component of the nonlinear inner solution as
x → ∞, i.e. the solution that behaves like (5.8)–(5.10) with α =5/3 when X → 1 with
y = O(1).
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The spanwisevariable component of the streamwise velocity ε4hũ(0)(X, y, z) +
εh2ũ(1)(X, y, z) will then behave like

ε4hũ(0)(X, y, z)+εh2ũ(1)(X, y, z) ∼ ε4h

(X−1)2/3
ũ

(0)
(0),0(y, z)+εh2(X−1)1/3ũ(0)

(1),0(y, z) (8.11)

as X → 1 with y =O(1), where ũ
(0)
(0),0(y, z), ũ

(0)
(1),0(y, z) denote the appropriate solutions

of (5.11)–(5.13). This suggests that the linear solution modal energy minimum will
gradually disappear and a second minimum will emerge at X − 1 =O(ε3/h) when
ε3 � h � 1. There should, therefore, be a range of h for which the modal energies
have a double minimum, which has not as yet been observed experimentally – most
likely because no experiments have been done for sufficiently small values of h. The
remaining minimum should move upstream and disappear into the inner region as
h → 1.

To get some sense of its subsequent behaviour, we plotted the square of the spanwise
variable shear stress |UY (x, 0, πl) − Ū Y (x, 0, πl)|2 as a function of x in figure 12. The
results show that it only vanishes near the start of the wake region, i.e. in the near
field of the roughness array when x > 0. This suggests that the streamwise velocity
perturbation does not exhibit the wake region sign reversal seen in both the direct
Navier-Stokes (DNS) and linear problem LBR computations (see e.g. figures 6 and 9)
and, therefore, that the modal energy evolution will not have an easily localized sharp
minimum on the short streamwise length scale of the inner region. This is not, however,
completely inconsistent with the DNS and linear problem LBR computations since
the growth initiation region would still appear to be highly localized on the long
streamwise length scale X of the outer region. The insert confirms that the final
slopes are entirely consistent with the asymptotic results of § 4.

Equations (3.1) and (3.20) show that the dominant contribution to the total inner
region energy (summed over all modes) comes from the wall layer solution with the
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crossflow velocities now being just as important as those in the streamwise direction
and is given by

ε3

∫ ∞

0

[|U − λ
	

Y |2 + |W |2] dY. (8.12)

This result is smaller than the scaled energies in the outer region by a factor of ε and
much larger than the linear solution result, which suggests that nonlinear effects can
– order of magnitude wise at least – produce very large wakes in the downstream
flow. These results also suggest that the nonlinear effects have an important influence
on the far wake behaviour.

Figure 13 is a plot of the scaled modal energy components (8.2) of the profile
averaged energy (8.3) and the profile averaged streamwise energy (8.9) for the cases
shown in figure 10. We only show the first mode since it contains virtually all of the
energy in this case. The figure shows that the sharp energy minimum found in the
linear case (figure 3) occurs much further upstream and is much less pronounced in
the fully nonlinear problem. The transient energy growth, therefore, appears to be
much weaker in this case. But the initial energy decay is now much less severe and
the wakes still appear to persist over large streamwise distances. The scaled energy
levels are also somewhat smaller than in the linear case but the scale factors (ε2 as
opposed to ε8) are now much larger.
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A uniformly valid high Reynolds number asymptotic solution for the flow over a
periodic array of relatively small roughness elements whose spanwise separation is of
the order of the local boundary-layer thickness was constructed in this paper. The
roughness elements, which are assumed to be more or less circular with streamwise
and spanwise scales equal to the local boundary-layer thickness, are required to
be small enough to produce only local separation. The analysis shows that there
is a local asymptotic (‘inner’) solution in the vicinity of the roughness elements
that decays over a very short streamwise distance, but eventually breaks down in
an (‘outer’) downstream region where the flow is governed by the LBR equations.
The solutions to these equations, which continue the local solution into that region,
are the main focus of this paper. They can be interpreted as eigensolutions of the
LBR equations that often exhibit spatial growth and can persist over relatively long
streamwise distances, which are much longer than the distance between the roughness
elements and the leading edge.

The ‘inner’ solution, which is, in general, nonlinear, involves considerable numerical
computation. But analytical results were obtained for the strictly linear problem (where
the scaled roughness height h � 1) and extensive numerical computations were carried
out for this case. The results show that the outer solution wake energies for the fully
nonlinear case (corresponding to O(1) scaled roughness heights) will be larger by a
factor of R = ε−6 than those in the strictly linear case. The surprising conclusion from
this is that relatively mild nonlinearity (h = O(1) or so) can have a much larger effect
on the far wakes than on the near field flow in the vicinity of the roughness.

The second author would like to thank Dr A. Afjeh, Professor and Chairman of the
MIME Department, University of Toledo, for his encouraging and valuable support,
and Dr R. Hixon, Associate Professor, University of Toledo.

Appendix A
It follows from (3.14) that

π0(y, k) = 1 + |k|π(1)
0 (y) + k2π(2)

0 (y) + O(k3) for y = O(1), (A 1)

where

π0(y, k) = e−|k|y for |k|y = O(1), (A 2)

with |k| ≡ lim
ε → 0

√
k2 + ε2 and

π(1)
0 =

∫ ∞

y

(U 2
B − 1) dy − y for y = O(1), (A 3)

π0 =

1 + |k|
[∫ ∞

y

(U 2
B − 1) dy − y

]

1 + |k|
∫ ∞

0

(U 2
B − 1) dy

+ O(k2), (A 4)

π0(y, 0) = 1, (A 5)

dπ(1)
0

dy
= −U 2

B + · · · . (A 6)
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It therefore follows from (3.16) that

π0(y, k) = 1 − |k| λ
2y3

3
− k2 y2

2
+ O(k3) as y → 0, (A 7)

and since

P̃
(j )
0 (k) ∼ (ik)βj −1ã

(j )
0 as k → 0, (A 8)

it follows that that

pj (x, y) ∼
[

1

xβj
+

βjπ(1)
0 (y)

xβj +1
− βj (βj + 1)π(2)

0 (y)

xβj +2
+ · · ·

]
p̂j .. (A 9)

as x → ∞, and, therefore, from (3.6) and (3.7)

v̄j (x, y) ∼ λ y p̂j

xβj
− βj p̂j

λ xβj +1
+ · · · , (A 10)

ūj (x, y) ∼ λ p̂j

(βj − 1)xβj −1
+ · · · , (A 11)

as y → 0, where
¯̂pj (y) ≡ 2 sin πβjΓ (βj )ã

(j )
0 . (A 12)

Then since P̄ (x) and P̄ (1)(x) are assumed to decay as x−βi for i = 0, 2 as x → ∞,
(4.13)–(4.16) will possess solutions of the form

Ū − λY = x−(β0+1/3)Ū 0(η), U (1) = x−(β1+1/3)Ū 1(η) (A 13)

and

V̄ = x−(β0+1)λ−1/3V̄0(η), V (1) = x−(β1+1)λ−1/3Ṽ1(η, z), (A 14)

where Ū j , V̄j satisfy

−
[
η

3

dŪ j

dη
+

(
βj +

1

3

)
Ū j

]
+

dV̄j

dη
= 0, (A 15)

d2Ū j

dη2
+ η

[
η

3

dŪ j

dη
+

(
βj +

1

3

)
Ū j

]
+

βj p̂j

λ2/3
= V̄j , (A 16)

and it follows from (A 10) and (A 11) that they will match with the limiting form of
the outer expansion (3.1) if

Ū 0 = O(η−2), V̄0 =
β0p̂0

λ2/3
+ O(η−1), Ū 1 = O(1), V̄1 = O(η), (A 17)

provided we take

β1 = β0 − 4/3. (A 18)

The first-order solution, therefore, grows very rapidly with x and quickly dominates
over the zeroeth-order solution. So this solution rapidly breaks down and is probably
not very robust at finite Reynolds numbers. In fact it follows from (A 9) that the
magnitude of ε p̄1 will be equal to that of p̄0 and the spanwise mean component of the
expansion (3.1) will, therefore, break down when εxβ0−β1 = εx4/3 = (δ1/4x)4/3 = O(1). It
is, therefore, necessary to obtain a new expansion in the relatively small ‘outer region’
where

X̄ ≡ (x∗ − x∗
0 )/x

∗
0 δ3/4 = δ1/4x (A 19)
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Main boundary layer 

Wall layer

δ–1/4 δ*

δ*

δ1/4 δ*

Outer deck 

δ–1/4 δ*

Figure 14. Spanwise mean flow structure

is O(1), which is precisely the triple-deck scaling. The flow in this region (depicted
in figure 14) is two-dimensional and has the three-layer structure described in § 23.8
of Rothmayer & Smith (1998). Smith (1973) has inferred that the two-dimensional
inner solution matches onto an outer linearized triple-deck solution by realizing that
the protuberance acts like a delta function on the longer triple-deck length scale (see
also Smith et al. 1981). He was therefore able to show that β0 = 2/3 by considering
only the outer solution. He also showed that the solution in the wall layer satisfies
the two-dimensional linearized boundary-layer equations (given by (4.11)–(4.13) with
W = 0) while the solution in the main boundary layer is given by

{u, v, w, p} = {UB(η), δVB(X, η), 0, 0} + ε2δβ0/4{δ−1/4 ¯̃u(X̄, y), ¯̃v(X̄, y), 0, ¯̃p(X̄)},
(A 20)

where

¯̃u(X̄, y) = U ′
B(y)A(X̄), ¯̃v(X̄, y) = −UB(y)

dA(X̄)

dX̄
(A 21)

and

¯̃p(X̄) → p̂0

X̄β0
, A(X̄) → a0λ

2/3F̃ 0(0) +
p̂0

i (β0 − 1)X̄β0−1
as X̄ → 0 (A 22)

with a0 = −3(−3Ai ′(0)/4)3/4 cos(π/8), which will clearly match onto (3.1), (A.9), (A.10)
and (A.11) if we take

Ū 1(y) = a0λ
2/3F̃ 0(0), (A 23)

when y = O(1). The streamwise velocity perturbation Ū 1(y) is given by the limiting
form of the lower-deck solution for y = O(δ1/4).

This solution will itself breakdown on the long streamwise length scale where
X − 1 =O(1) and a new outer expansion will have to be obtained. The flow will
then be governed by the two-dimensional linearized constant pressure boundary-layer
equations. And since Smith (1973) and Smith et al. (1981) showed that

¯̃P (X̄) ∼ X̄−2 and A(X̄· ) ∼ X̄·

−7/3
as X̄· → ∞. (A 24)

This solution must expand as

{u, v, w, p} = ε3{(X̄, y), δ ¯̃v(X, y), 0, ¯̃p(X, y)} + · · · (A 25)

for y = O(1).
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It now follows from § 6 that the spanwise mean surface pressure is given by

p̄0(x, y) =

∫ ∞

−∞
π0(y, k)

91/3(ikλ)5/3

k2Γ (1/3)
F̄0(k)eikx dk

∼ −
2 sin π

3

x2/3

Γ (2/3)

Γ (1/3)
91/3λ5/3F̄0(0) = −

√
3

x2/3

Γ (2/3)

Γ (1/3)
91/3λ5/3F̄0(0) =

p̂0

x2/3
(A 26)

and

v̄0(x, y) =
1

UB(y)

∫ ∞

−∞

91/3(ikλ)5/3

ik3Γ (1/3)
F̄0(k)

dπ0(y, k)

dy
eikx dk ∼ −

2 sin π
3

x2/3

Γ (2/3)λ5/391/3UB(y)

Γ (1/3)

× F̄0(0) = −
√

3

x2/3

Γ (2/3)λ5/391/3UB(y)

Γ (1/3)
F̄0(0) =

UB(y)p̂0

x2/3
. (A 27)

in the linear solution and that β0 = 2/3 in this case. Equation (3.6), therefore, shows
that

ū0(x, y) ∼ −3U ′
B(y)x1/3p̂0, (A 28)

where

p̂0 ≡ −
√

3Γ (2/3)

Γ (1/3)
91/3λ5/3F̄0(0). (A 29)

Appendix B

(3 − α + j/3)ũ(j )
1 + ṽ

(j )
1,y + w̃

(j )
1,z = 0, (B 1)

(3 − α + j/3)UB(y)ũ(j )
1 + ṽ

(j )
1 U ′

B(y) =
y

2
F ′′(y)(2 − α + j/3)ũ0

+
1

2
[yU ′

B(y)]′ṽ
(j )
0 − VB(1, y)ũ(j )

0,y +
1

2
yU ′

B(y)ũ(j )
0 + ũ

(j )
0,yy + ũ

(j )
0,zz, (B 2)

(2 − α + j/3)UB(y)ṽ(j )
1 + p̃

(j )
1,y = −ṽ

(j )
0,yVB(1, y) − ṽ

(j )
0 VB,y(1, y) + ṽ

(j )
0,yy + ṽ

(j )
0,zz, (B 3)

(2 − α + j/3)UB(y)w̃(j )
1 + p̃

(j )
1,z = −VB(1, y)w̃(j )

0,y + w̃
(j )
0,yy + w̃

(j )
0,zz. (B 4)

Appendix C. Upstream matching conditions for LBR equation solution
In the strictly linear case, the uniformly valid composite expansion of the upstream

matching conditions as X → 1 for the LBR equations is given by

ũ → 1

(X − 1)2/3

[
ũ

(0)
0 (y, z) +

Ũ 0(η, z)

(X − 1)1/3
− 9

10yλ

∂2p̃
(0)
0 (0, z)

∂z2

]

+
1

(X−1)1/3

[
ũ

(1)
0 (y, z) +

Ũ 1(η, z)

(X−1)1/3
− 9

4yλ

∂2p̃
(1)
0 (0, z)

∂z2
+

3Γ (2/3)(3λ)1/3

4 λ(X−1)1/3
∂2p̃

(1)
0 (0, z)

∂z2

]
,

(C 1)
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ṽ → 1

(X − 1)5/3

[
ṽ

(0)
0 (y, z) + λ−1/3Ṽ0(η, z) − 3

5λ

∂2p̃
(0)
0 (0, z)

∂z2

]

+
1

(X−1)4/3

[
ṽ

(1)
0 (y, z) + λ−1/3Ṽ1(η, z) − 3

4λ

∂2p̃
(1)
0 (0, z)

∂z2
+

Γ (2/3)(3λ)1/3

2 λ(X − 1)1/3
∂2p̃

(1)
0 (0, z)

∂z2
y

]
,

(C 2)

w̃ → 1

(X − 1)5/3

[
w̃

(0)
0 (y, z) +

W̃0(η, z)

(X − 1)1/3
− 3

5λy

∂ p̃
(0)
0 (0, z)

∂z

]

+
1

(X − 1)4/3

[
w̃

(1)
0 (y, z) +

W̃1(η, z)

(X − 1)1/3
− 3

4λy

∂p̃
(1)
0 (0, z)

∂z

]
, (C 3)

p̃ → p̃
(0)
0 (y, z)

(X − 1)8/3
+

p̃
(1)
0 (y, z)

(X − 1)7/3
(C 4)

with the relevant quantities given by (4.3), (4.22), (4.39), (4.40) and (5.24)–(5.26).
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